On the Use of Implicit and Iterative Methods for the Time Integration of the Wave Equation
نویسنده
چکیده
The very short-period oscillations inevit,ably undergone by any meteorological quantity predicted by a system of primit’ive equations are principally noise, if an atmospheric model is designed so as to forecast a large-scale and slowly moving meteorological wave. The noise appears as highfrequency gravitational waves. In this paper the words “gravitational wave” will be used in this sense. It is necessary to suppress the noise. Otherwise, an important meteorological wave can be masked by it. The problem of initia.lization of data has been st,udied to find a way to reduce the amplitude of noise (e.g., Hinkelmann [4], Phillips [7]). This can be att,ained by an appropriat,e adjustment between the fields of wind and pressure. However, the control of noise which may arise after t.he initial time has not yet been achieved. This problem is presumably serious when a model of the moist atmosphere is dealt with or when the influence of orography is taken into consideration. Namely, if a rapidly changeable process such as the release of latent heat due to condensation of water vapor is included without care in a prognostic equation, the maintained adjust,ment between the two fields will be destroyed and noise will be excited. Similarly, the motion which is forced by mountains is a source of noise too. In addition, noise will be amplified if the proceduye of numerical integration of the primitive equations does not satisfy the condition for computational stability. In the case cf tlhe “leapfrog” method, which is widely used and is also called the cent,ered-difference method, this condition places an upper limit on the t,ime interval of the marching process. The time interval thus specified is very small as compared with the characteristic time of the meteorological wave.
منابع مشابه
The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation
We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...
متن کاملStability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP
Efficiency of numerical methods is an important problem in dynamic nonlinear analyses. It is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable meth...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملImplicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملEFFICIENT NUMERICAL DYNAMIC ANALYSIS OF TENSION LEG PLATFORMS UNDER SEA WAVE LOADS
However it is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable methods for numerical integration. The modified Euler method (MEM) is a simple nume...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004